## 800G OSFP 2xLR4 10km Silicon Photonics Transceiver Module

 FUU-800P4K10C
## Features

- OSFP MSA and CMIS compliant
- $8 \times 106.25 \mathrm{Gbps}(53.125 \mathrm{GBd}$ PAM4) electrical interface
. $8 \times 106.25 \mathrm{Gbps}(53.125 \mathrm{GBd}$ PAM4) optics architecture
- Power consumption <16W
- Maximum link length of 10 km G. 652 SMF with KP-FEC
- Dual duplex LC receptacles
- Built-in digital diagnostic functions
- Operating case temperature $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- 3.3V power supply voltage
- RoHS compliant (lead free)


## Applications

- 800GBASE-2xFR4
- Data center network


## Description

The FIBERSTAMP FUU-800P4K10C is a transceiver module designed for 10 km optical communication applications, and it is compliant to OSFP MSA, IEEE 802.3 protocol. The silicon photonics transceiver is based on a new state-of-the-art silicon photonics (SiPh) platform. It uses SiPh chips that integrate a number of active and passive optoelectronic components, 3D packaging technology and 7nm DSP chips. It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference. The module offers very high functionality and feature integration, accessible via a two-wire serial interface.


Figure1. Module Block Diagram

## Absolute Maximum Ratings

| Parameter | Symbol | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | -0.3 | 3.6 | $V$ |


| Input Voltage | Vin | -0.3 | Vcc+0.3 | V |
| :---: | :---: | :---: | :---: | :---: |
| Storage Temperature | Ts $\dagger$ | -40 | 85 | ${ }^{\circ} \mathrm{C}$ |
| Case Operating Temperature | Top | 0 | 70 | ${ }^{\circ} \mathrm{C}$ |
| Humidity(non-condensing) | Rh | 5 | 95 | $\%$ |

## Recommended Operating Conditions

| Parameter | Symbol | Min | Typical | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 3.13 | 3.3 | 3.47 | V |
| Operating Case temperature | Tca | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |
| Data Rate Per Lane | fd |  | 106.25 |  | $\mathrm{Gbit} / \mathrm{s}$ |
| Humidity | Rh | 5 |  | 85 | $\%$ |
| Power Dissipation | Pm |  |  | 16 | W |

Electrical Specifications

| Parameter | Symbol | Min | Typical | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Differential input impedance | Zin | 90 | 100 | 110 | ohm |
| Differential Output impedance | Zout | 90 | 100 | 110 | ohm |
| Differential input voltage amplitude | $\Delta$ Vin | 400 |  | 900 | $\mathrm{mVp-p}$ |
| Differential output voltage amplitude | $\Delta$ Vout |  |  | 850 | $\mathrm{mVp}-\mathrm{p}$ |
| Bit Error Rate | BER |  |  | $V_{\text {cc }}$ | V |
| Input Logic Level High | $\mathrm{V}_{\text {IH }}$ | 2.0 |  | $\mathrm{~V}-4$ | - |
| Input Logic Level Low | $\mathrm{V}_{\text {IL }}$ | 0 |  | $\mathrm{~V}_{\text {cc }}$ | V |
| Output Logic Level High | $\mathrm{V}_{\text {OH }}$ | $\mathrm{V}_{\text {cc }}-0.5$ |  | 0.4 | V |
| Output Logic Level Low | $\mathrm{V}_{\text {OL }}$ | 0 |  | V |  |

## Note:

1) $B E R=2.4 E-4 ;$ PRBS31Q@53.125GBd. Pre-FEC
2) Differential input voltage amplitude is measured between TxnP and TxnN.
3) Differential output voltage amplitude is measured between $R \times n P$ and $R \times n N$.

Optical Characteristics

| Parameter |  | Symbol | Min | Typical | Max | Unit | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Centre Wavelength | L 1 | 1264.5 |  | 1277.5 | nm | - |  |
| Centre Wavelength | L 2 | 1284.5 |  | 1297.5 | nm |  |  |
| Centre Wavelength | L 3 | 1304.5 |  | 1317.5 | nm |  |  |
| Centre Wavelength | L 4 | 1324.5 |  | 1337.5 | nm |  |  |
| Centre Wavelength | L 5 | 1264.5 |  | 1277.5 | nm |  |  |


| Parameter | Symbol | Min | Typical | Max | Unit | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Centre Wavelength | L6 | 1284.5 |  | 1297.5 | nm |  |
| Centre Wavelength | L7 | 1304.5 |  | 1317.5 | nm |  |
| Centre Wavelength | L8 | 1324.5 |  | 1337.5 | nm |  |
| Side-mode suppression ratio | SMSR | 30 | - | -- | dB | - |
| Average launch power, each lane | Pout | -2.7 | - | 5.1 | dBm | - |
| Optical Modulation Amplitude(OMA outer), each lane | OMA | -0.3 | - | 4.4 | dBm | - |
| Transmitter and dispersion eye closure for PAM4 (TDECQ),each lane | TDECQ |  |  | 3.4 | dB |  |
| Extinction Ratio | ER | 3.5 | - | - | dB | - |
| Average launch power of OFF transmitter, each lane |  |  |  | -16 | dB | - |
| Receiver |  |  |  |  |  |  |
| Centre Wavelength | L1 | 1264.5 |  | 1277.5 | nm | - |
| Centre Wavelength | L2 | 1284.5 |  | 1297.5 | nm |  |
| Centre Wavelength | L3 | 1304.5 |  | 1317.5 | nm |  |
| Centre Wavelength | L4 | 1324.5 |  | 1337.5 | nm |  |
| Centre Wavelength | L5 | 1264.5 |  | 1277.5 | nm |  |
| Centre Wavelength | L6 | 1284.5 |  | 1297.5 | nm |  |
| Centre Wavelength | L7 | 1304.5 |  | 1317.5 | nm |  |
| Centre Wavelength | L8 | 1324.5 |  | 1337.5 | nm |  |
| Receiver Sensitivity in OMA outer | RXsen |  |  | -6.8 | dBm | 1 |
| Average power at receiver, each lane input, each lane | Pin | -9 |  | 5.1 | dBm | - |
| Receiver Reflectance |  |  |  | $-26$ | dB | - |
| LOS Assert |  | -14 | -13 |  | dBm | - |
| LOS De-Assert |  |  | -11 | -10 | dBm | - |
| LOS Hysteresis |  | 0.5 |  |  | dB | - |

## Note:

1) Measured with conformance test signal at TP3 for BER $=2.4 \mathrm{E}-4$ Pre-FEC

## Pin List and Description

| Pin\# | Symbol | Description | Logic | Direction | Plug Sequence | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | GND | Ground |  |  | 1 |  |
| 2 | TX2p | Transmitter Data Non-Inverted | CML-I | Input from Host | 3 |  |
| 3 | TX2n | Transmitter Data Inverted | CML-I | Input from Host | 3 |  |
| 4 | GND | Ground |  |  | 1 |  |
| 5 | TX4p | Transmitter Data Non-Inverted | CML-I | Input from Host | 3 |  |
| 6 | TX4n | Transmitter Data Inverted | CML-I | Input from Host | 3 |  |
| 7 | GND | Ground |  |  | 1 |  |
| 8 | TX6p | Transmitter Data Non-Inverted | CML-I | Input from Host | 3 |  |
| 9 | TX6n | Transmitter Data Inverted | CML-I | Input from Host | 3 |  |
| 10 | GND | Ground |  |  | 1 |  |
| 11 | TX8p | Transmitter Data Non-Inverted | CML-I | Input from Host | 3 |  |
| 12 | TX8n | Transmitter Data Inverted | CML-I | Input from Host | 3 |  |
| 13 | GND | Ground |  |  | 1 |  |
| 14 | SCL | 2-wire Serial interface clock | LVCMOS-1/O | Bi-directional | 3 | Open-Drain with pullup resistor on Host |
| 15 | VCC | +3.3V Power |  | Power from Host | 2 |  |
| 16 | VCC | +3.3V Power |  | Power from Host | 2 |  |
| 17 | LPWn/PRSn | Low-Power Mode / Module Present | Multi-Level | Bi-directional | 3 | See pin description for required circuit |
| 18 | GND | Ground |  |  | 1 |  |
| 19 | RX7n | Receiver Data Inverted | CML-O | Output to Host | 3 |  |
| 20 | RX7p | Receiver Data Non-Inverted | CML-O | Output to Host | 3 |  |
| 21 | GND | Ground |  |  | 1 |  |
| 22 | RX5n | Receiver Data Inverted | CML-O | Output to Host | 3 |  |
| 23 | RX5p | Receiver Data Non-Inverted | CML-O | Output to Host | 3 |  |
| 24 | GND | Ground |  |  | 1 |  |
| 25 | RX3n | Receiver Data Inverted | CML-O | Output to Host | 3 |  |
| 26 | RX3p | Receiver Data Non-Inverted | CML-O | Output to Host | 3 |  |
| 27 | GND | Ground |  |  | 1 |  |
| 28 | RX1n | Receiver Data Inverted | CML-O | Output to Host | 3 |  |
| 29 | RX1p | Receiver Data Non-Inverted | CML-O | Output to Host | 3 |  |
| 30 | GND | Ground |  |  | 1 |  |


| Pin\# | Symbol | Description | Logic | Direction | Plug Sequence | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 31 | GND | Ground |  |  | 1 |  |
| 32 | RX2p | Receiver Data Non-Inverted | CML-O | Output to Host | 3 |  |
| 33 | RX2n | Receiver Data Inverted | CML-O | Output to Host | 3 |  |
| 34 | GND | Ground |  |  | 1 |  |
| 35 | RX4p | Receiver Data Non-Inverted | CML-O | Output to Host | 3 |  |
| 36 | RX4n | Receiver Data Inverted | CML-O | Output to Host | 3 |  |
| 37 | GND | Ground |  |  | 1 |  |
| 38 | RX6p | Receiver Data Non-Inverted | CML-O | Output to Host | 3 |  |
| 39 | RX6n | Receiver Data Inverted | CML-O | Output to Host | 3 |  |
| 40 | GND | Ground |  |  | 1 |  |
| 41 | RX8p | Receiver Data Non-Inverted | CML-O | Output to Host | 3 |  |
| 42 | RX8n | Receiver Data Inverted | CML-O | Output to Host | 3 |  |
| 43 | GND | Ground |  |  | 1 |  |
| 44 | INT/RSTn | Module Interrupt / Module Reset | Multi-Level | Bi-directional | 3 | See pin description for required circuit |
| 45 | VCC | +3.3V Power |  | Power from Host | 2 |  |
| 46 | VCC | +3.3V Power |  | Power from Host | 2 |  |
| 47 | SDA | 2-wire Serial interface data | LVCMOS-1/O | Bi-directional | 3 | Open-Drain with pullup resistor on Host |
| 48 | GND | Ground |  |  | 1 |  |
| 49 | TX7n | Transmitter Data Inverted | CML-I | Input from Host | 3 |  |
| 50 | TX7p | Transmitter Data Non-Inverted | CML-I | Input from Host | 3 |  |
| 51 | GND | Ground |  |  | 1 |  |
| 52 | TX5n | Transmitter Data Inverted | CML- | Input from Host | 3 |  |
| 53 | TX5p | Transmitter Data Non-Inverted | CML-1 | Input from Host | 3 |  |
| 54 | GND | Ground |  |  | 1 |  |
| 55 | TX3n | Transmitter Data Inverted | CML-I | Input from Host | 3 |  |
| 56 | TX3p | Transmitter Data Non-Inverted | CML-I | Input from Host | 3 |  |
| 57 | GND | Ground |  |  | 1 |  |
| 58 | TX1n | Transmitter Data Inverted | CML-I | Input from Host | 3 |  |
| 59 | TX1p | Transmitter Data Non-Inverted | CML-I | Input from Host | 3 |  |
| 60 | GND | Ground |  |  | 1 |  |

Top Side (viewed from top)


Bottom Side (viewed from bottom)


Figure2. OSFP module Pin-out Details

## INT/RSTn

INT/RSTn is a dual function signal that allows the module to raise an interrupt to the host and also allows the host to reset the module. The circuit shown in Figure 4 enables multi level signaling to provide direct signal control in both directions. Reset is an active-low signal on the host which is translated to an active-low signal on the module. Interrupt is an active high signal on the module which gets translated to an active-high signal on the host. The INT/RSTn signal operates in 3 voltage zones to indicate the state of Reset for the module and Interrupt for the host. Figure 3 shows these 3 zones. The host uses a voltage reference at 2.5 volts to determine the state of the H_INT signal and the module uses a voltage reference at 1.25 V to determine the state of the $M \_R S T n$ signal.


## Figure3. INT/RSTn voltage zones

- Zone 1 - Reset operation - Zone 1 is the state when the module is in reset and interrupt deasserted (M_RSTn=Low, H_INT=Low). The min/max voltages for Zone 1 are defined by parameters V_INT/RSTn_1 and V_INT/RSTn_2 in Table 1.
- Zone 2 - Normal operation - Zone 2 is the normal operating state with reset deasserted (M_RSTn=High) and interrupt deasserted (H_INT=Low). The min/max voltages for Zone 2 are defined by parameter V_INT/RSTn_3 in Table

1. 

- Zone 3 - Interrupt operation - Zone 3 is the state for the module to assert interrupt and the module must also be out of reset ( $M$ _RSTn=High, H_INT=High). The min/max voltages for Zone 3 are defined by parameter V_INT/RSTn_4 in Table 1.


Figure 4. INT/RSTn circuit

| Parameter | Nominal | Min | Max | Units | Note |
| :---: | :---: | :---: | :---: | :---: | :--- |
| Host VCC | 3.300 | 3.135 | 3.465 | Volts | VCC voltage on the Host |
| H_Vref_INT | 2.500 | 2.475 | 2.525 | Volts | Precision voltage reference for H_INT |
| M_Vref_RSTn | 1.250 | 1.238 | 1.263 | Volts | Precision voltage reference for M_RSTn |
| R1 | 68 k | 66 k | 70 k | Ohms | Recommend 68.1k ohms 1\% resistor |
| R2 | 5 k | 4.9 k | 5.1 k | Ohms | Recommend 4.99k ohms 1\% resistor |
| R3 | 8 k | 7.8 k | 8.2 k | Ohms | Recommend 8.06k ohms 1\% resistor |
| V_INT/RSTn_1 | 0.000 | 0.000 | 1.000 | Volts | INT/RSTn voltage for No Module |
| V_INT/RSTn_2 | 0.000 | 0.000 | 1.000 | Volts | INT/RSTn voltage for Module installed, H_RSTn=Low |
| V_INT/RSTn_3 | 1.900 | 1.500 | 2.250 | Volts | INT/RSTn voltage for Module installed, H_RSTn=High, <br> M INT=Low |
| V_INT/RSTn_4 | 3.000 | 2.750 | 3.465 | Volts | INT/RSTn voltage for Module installed, H_RSTn=High, <br> M_INT=High |

Table 1. INT/RSTn circuit parameters

## LPWn/PRSn

LPWn/PRSn is a dual function signal that allows the host to signal Low Power mode and the module to indicate Module Present. The circuit shown in Figure 6 enables multi-level signaling to provide direct signal control in both directions. Low Power mode is an activelow signal on the host which gets converted to an active-low signal on the module. Module Present is controlled by a pull-down resistor on the module which gets converted to an active-low logic signal on the host.
The LPWn/PRSn signal operates in 3 voltage zones to indicate the state of Low Power mode for the module and Module Present for the host. Figure 5 shows these 3 zones. The host uses a voltage reference at 2.5 volts to determine the state of the $\mathrm{H} \_$PRSn signal and the module uses a voltage reference at 1.25 V to determine the state of the M_LPWn signal.


Figure 5. LPWn/PRSn voltage zones

- Zone 1 - Low Power mode - Zone 1 is the low power state and module is present ( $\left.M \_L P W n=L o w, H \_P R S n=L o w\right)$. The min/max voltages for Zone 1 are defined by parameters $\vee \_$_LPWn/PRSn_1 in Table 2.
- Zone 2 - High Power mode - Zone 2 is the high power state and module is present ( $M$ _LPWn=High, H_PRSn=Low). The min/max voltages for Zone 2 are defined by parameters V_LPWn/PRSn_2 in Table 2.
- Zone 3 - Module Not Present - Zone 3 is the state for when the module is not present (H_PRSn=High). The min/max voltages for Zone 3 are defined by parameters $\vee$ _LPWn/PRSn_3 in Table


Figure 6. LPWn/PRSn circuit

| Parameter | Nominal | Min | Max | Units | Note |
| :---: | :---: | :---: | :---: | :--- | :--- |
| Host VCC | 3.300 | 3.135 | 3.465 | Volts | VCC voltage on the Host |
| H_Vref_PRSn | 2.500 | 2.475 | 2.525 | Volts | Precision voltage reference for H_PRSn |
| M_Vref_LPWn | 1.250 | 1.238 | 1.263 | Volts | Precision voltage reference for M_LPWn |
| R11 | 25 k | 24.5 k | 25.5 k | Ohms | Recommend 24.9k ohms 1\% resistor |
| R12 | 15 k | 14.7 k | 15.3 k | Ohms | Recommend 15k ohms 1\% resistor |
| R13 | 10 k | 9.8 k | 10.2 k | Ohms | Recommend 10k ohms 1\% resistor |
| V__LPWn/PRSn_1 | 0.950 | 0.000 | 1.100 | Volts | LPWn/PRSn voltage for Module installed, H_LPWn=Low |
| V_LPWn/PRSn_2 | 1.700 | 1.400 | 2.250 | Volts | LPWn/PRSn voltage for Module installed, H_LPWn=High |
| V_LPWn/PRSn_3 | 3.300 | 2.750 | 3.465 | Volts | LPWn/PRSn voltage for No Module |

Table 2. LPWn/PRSn circuit parameters

## Power Supply Filtering

Figure 7 provides an example implementation for a 3.3 V power filter on the host board. If an alternate circuit is used for power filtering then the same filter characteristics as this example filter shall be met.


Figure7. Host Board Power Supply Filtering

## DIAGNOSTIC MONITORING INTERFACE

Digital diagnostics monitoring function is available on all FIBERSTAMPOSFP products. A 2-wire serial interface provides user to contact with module.

## Memory Structure and Mapping

The TWI protocol only supports eight-bit addresses. This limits the management memory that can be directly accessed by the host to 256 bytes, which is divided in Lower Memory (addresses 00h through 7Fh) and Upper Memory (addresses 80h through FFh).
A larger addressable management memory is required for all but the most basic modules. This is supported by a structure of 128 -byte pages, together with a mechanism for dynamically mapping any of the 128 -byte pages from a larger internal management memory space into Upper Memory the host addressable space. The addressing structure of the additional internal management memory is shown in Figure 8. The management memory inside the module is arranged as a unique and always host accessible address space of 128 bytes (Lower Memory) and as multiple upper address subspaces of 128 bytes each (Pages), only one of which is selected as host visible in Upper Memory. A second level of Page selection is possible for Pages for which several instances exist (e.g. where a bank of pages with the same Page number exists).
This structure supports a flat 256 byte memory for passive copper modules and permits timely access to addresses in the Lower Memory, e.g. Flags and Monitors. Less time critical entries, e.g. serial ID information and threshold settings, are available with the Page Select function in the Lower Page. For more complex modules which require a larger amount of management memory the host needs to use dynamic mapping of the various Pages into the host addressable Upper Memory address space, whenever needed.
Note: The management memory map has been designed largely after the QSFP memory map. This memory map has been changed in order to accommodate 8 electrical lanes and to limit the required memory space. The single address approach is used as found in QSFP. Paging is used in order to enable time critical interactions between host and module.

## Supported Pages

A basic 256 byte subset of the Management Memory Map is mandatory for all CMIS compliant devices. Other parts are only available for paged memory modules, or when advertised by the module. See CMIS V4.0 for details regarding the advertisement of supported management memory spaces.
In particular, support of the Lower Memory and of Page 00h is required for all modules, including passive copper cables. These pages are therefore always implemented. Additional support for Pages $01 \mathrm{~h}, 02 \mathrm{~h}$ and bank 0 of Pages 10 h and 11 h is required for all paged memory modules.

Bank 0 of pages 10h-1Fh, provides lane-specific registers for the first 8 lanes, and each additional bank provides support for additional 8 lanes. Note, however, that the allocation of information over the banks may be page specific and may not to be related to grouping data for 8 lanes.

The structure allows address space expansion for certain types of modules by allocating additional Pages.
Moreover, additional banks of pages.


Figure8. OSFP Memory Map

## Mechanical Dimensions(mm)



Figure9. Mechanical Specifications

## Regulatory Compliance

FIBERSTAMP FUU-800P4K 10C transceivers are Class 1 Laser Products. They meet the requirements of the following standards:

| Feature |  |
| :---: | :--- |
| Laser Safety | IEC 60825-1:2014 (3rd Edition) |
|  | IEC 60825-2:2004/AMD2:2010 |
|  | EN 60825-1-2014 |
|  | EN 60825-2:2004+A1+A2 |
| Electrical Safety | EN 62368-1: 2014 |
|  | IEC 62368-1:2014 |
|  | UL 62368-1:2014 |
| Environmental protection | Directive 201 1/65/EU with amendment(EU)2015/863 |
|  | EN55032: 2015 |
| CE EMC | EN55035: 2017 |
|  | EN61000-3-2:2014 |
|  | EN61000-3-3:2013 |
| FCC | FCC Part 15, Subpart B |
|  | ANSI C63.4-2014 |

## References

1. OSFP MSA
2. CMIS
3. IEEE802.3
4. OIF CEI-112G-VSR

## $\triangle$ CAUTION:

Use of controls or adjustment or performance of procedures other than those specified herein may result in hazardous radiation exposure.

## Ordering information

| Part Number | Product Description |
| :---: | :--- |
| FUU-800P4K10C | OSFP, 800GBASE-2xLR4, 10km on Single mode Fiber (SMF), with DSP and Dual duplex <br> LC connector. |

## Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by FIBERSTAMP before they become applicable to any particular order or contract. In accordance with the FIBERSTAMP policy of continuous improvement specifications may change without notice. The publication of information in this data sheet does not imply freedom from patent or other protective rights of FIBERSTAMP or others. Further details are available from any FIBERSTAMP sales representative.

