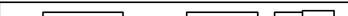


200G QSFP DD SR8 Optical Transceiver Module FEL-200S8M10C

Features

- 8 channels full-duplex transceiver modules
- Transmission data rate up to 26Gbps per channel
- 8 channels 850nm VCSEL array
- 8 channels PIN photo detector array
- Internal CDR circuits on both receiver and transmitter channels
- Support CDR bypass
- Low power consumption <4W
- Hot Pluggable QSFP DD form factor
- Maximum link length of 70m on OM3 Multimode Fiber (MMF) and 100m on OM4 MMF
- MPO24 connector receptacle
- Operating case temperature 0°C to +70°C
- 3.3V power supply voltage
- RoHS 6 compliant(lead free)


Applications

IEEE 802.3bm 100GBASE SR4

Description

The FIBERSTAMP Technologies FEL-20058M10C is a Eight-Channel, Pluggable, Parallel, Fiber-Optic QSFP Double Density for 2x100 Gigabit Ethernet Applications. This transceiver is a high performance module for short-range multi-lane data communication and interconnect applications. It integrates eight data lanes in each direction with 8x25.78125Gbps bandwidth. Each lane can operate at 25.78125Gbps up to 70 m using OM3 fiber or 100 m using OM4 fiber. These modules are designed to operate over multimode fiber systems using a nominal wavelength of 850nm. The electrical interface uses a 76 contact edge type connector. The optical interface uses an 24 fiber MTP (MPO) connector. This module incorporates FIBERSTAMP Technologies proven circuit and VCSEL technology to provide reliable long life, high performance, and consistent service.

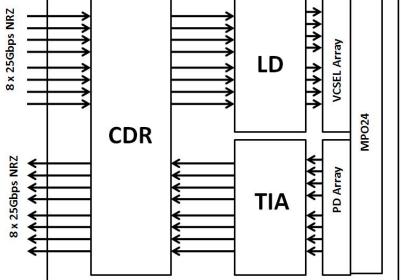


Figure 1. Module Block Diagram

2x100GBASE-SR4 QSFP DD is one kind of parallel transceiver. VCSEL and PIN array package is key technique, through I2C system can contact with module.

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.3	3.6	V
Input Voltage	Vin	-0.3	Vcc+0.3	V
Storage Temperature	Tst	-20	85	°C
Case Operating Temperature	Тор	0	70	°C
Humidity(non-condensing)	Rh	5	95	%

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit
Supply Voltage	Vcc	3.13	3.3	3.47	V
Operating Case temperature	Тса	0		70	°C
Data Rate Per Lane	fd		25.78125		Gbps
Humidity	Rh	5		85	%
Power Dissipation	Pm			4	W

Electrical Specifications

Parameter	Symbol	Min	Typical	Max	Unit
Differential input impedance	Zin	90	100	110	ohm
Differential Output impedance	Zout	90	100	110	ohm
Differential input voltage amplitude aAmplitude	ΔVin	300		1100	mVp-p
Differential output voltage amplitude	∆Vout	500		800	mVp-p
Skew	Sw			300	ps
Bit Error Rate	BER			5E-5	
Input Logic Level High	VIH	2.0		VCC	V
Input Logic Level Low	VIL	0		0.8	V
Output Logic Level High	VOH	VCC-0.5		VCC	V
Output Logic Level Low	VOL	0		0.4	V

Note:

- 1. BER=5E-5; PRBS 2^31-1@25.78125Gbps. Pre-FEC
- 2. Differential input voltage amplitude is measured between TxnP and TxnN.
- 3. Differential output voltage amplitude is measured between RxnP and RxnN.

Optical Characteristics

Table 3 - Optical Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Notes			
	Transmitter								
Centre Wavelength	λς	840	850	860	nm	-			
RMS spectral width	Δλ	-	-	0.6	nm	-			
Average launch power, each lane	Pout	-8.4	-	2.4	dBm	-			
Optical Modulation Amplitude (OMA),each lane	ОМА	-6.4		3	dBm	-			
Transmitter and dispersion eye closure(TDEC),each lane	TDEC			4.3	dB				
Extinction Ratio	ER	3	-	-	dB	-			
Average launch power of OFF transmitter, each lane				-30	dB	-			
Eye Mask coordinates: X1, X2, X3, Y1, Y2, Y3									
		Receiver				1			
Centre Wavelength	λς	840	850	860	nm	-			
Stressed receiver sensitivity in OMA				-5.2	dBm	1			
Maximum Average power at receiver , each lane input, each lane				2.4	dBm	-			
Minimum Average power at receiver , each lane				-10.3	dBm				
Receiver Reflectance				-12	dB	-			
LOS Assert		-30			dBm	-			
LOS De-Assert – OMA				-7.5	dBm	-			
LOS Hysteresis		0.5			dB	-			

Note:

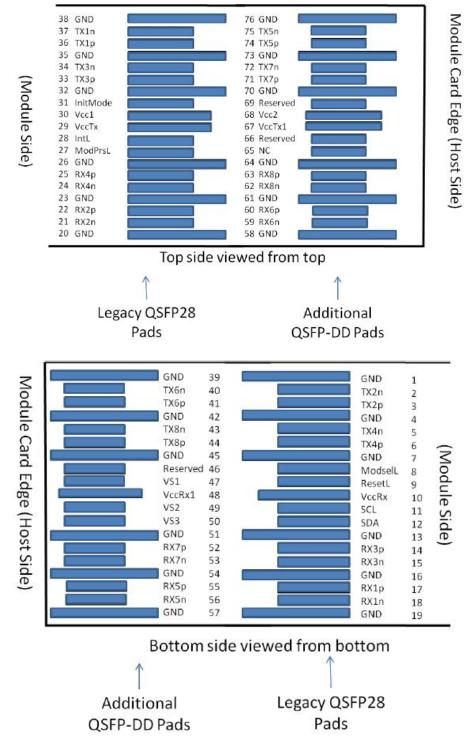
1. Measured with conformance test signal at TP3 for BER = 5E-5 Per-FEC

Pin Description

Pad	Logic	Symbol	Description	Plug Sequence ⁴	Notes
39		GND	Ground	1A	1
40	CML-I	Tx6n	Transmitter Inverted Data Input	3A	
41	CML-I	Tx6p	Transmitter Non-Inverted Data Input	3A	s.
42		GND	Ground	1A	1
43	CML-I	Tx8n	Transmitter Inverted Data Input	3A	1
44	CML-I	Тх8р	Transmitter Non-Inverted Data Input	3A	0
45		GND	Ground	1A	1
46		Reserved	For future use	3A	3
17	с. —	VS1	Module Vendor Specific 1	3A	3
48		VccRx1	3.3V Power Supply	2A	2
49		VS2	Module Vendor Specific 2	3A	3
50		VS3	Module Vendor Specific 3	3A	3
51	1	GND	Ground	1A	1
52	CML-0	Rx7p	Receiver Non-Inverted Data Output	3A	12
53	CML-O	Rx7n	Receiver Inverted Data Output	3A	1
54	3	GND	Ground	1A	1
55	CML-0	Rx5p	Receiver Non-Inverted Data Output	3A	K.
56	CML-0	Rx5n	Receiver Inverted Data Output	3A	
57		GND	Ground	1A	1
58		GND	Ground	1A	1
59	CML-0	Rx6n	Receiver Inverted Data Output	3A	-
50	CML-0	Rx6p	Receiver Non-Inverted Data Output	3A	1
51	01111 0	GND	Ground	1A	1
52	CML-0	Rx8n	Receiver Inverted Data Output	3A	-
63	CML-0	Rx8p	Receiver Non-Inverted Data Output	3A	
53 54	CML-0	GND	Ground	1A	1
65	8	NC	No Connect	3A	3
56 56		Reserved	For future use	3A	3
67				2A	2
68	3	VccTxl	3.3V Power Supply		
	8	Vcc2	3.3V Power Supply	2A	2
69 70		Reserved GND	For Future Use Ground	3A 1A	3
		E CONTRACT		12,000	1
71	CML-I	Tx7p	Transmitter Non-Inverted Data Input	3A	
72	CML-I	Tx7n	Transmitter Inverted Data Input	3A	
73		GND	Ground	1A	1
74	CML-I	Tx5p	Transmitter Non-Inverted Data Input	3A	1
75	CML-I	Tx5n	Transmitter Inverted Data Input	3A	
76		GND	Ground	1A	1
comm pote comm	on withi ntial un on groun	n the QSFP- less otherw d plane.	ommon ground (GND)for all signals and sup DD module and all module voltages are re vise noted. Connect these directly to the Vccl, Vcc2, VccTx and VccTxl shall be ap	ferenced to t host board s	his ignal-
Requ in T conn rate	irements able 4. ected wi d for a	defined fo VccRx, Vcc thin the mo maximum cur	or the host side of the Host Card Edge Co Rxl, Vccl, Vcc2, VccTx and VccTxl may be odule in any combination. The connector V crent of 1000 mA.	nnector are 1 internally Cc pins are e	isted ach
ohms the is g	to grou module. reater t	nd on the h Vendor spe han 10 kOhm	cific, Reserved and No Connect pins may b host. Pad 65 (No Connect) shall be left ecific and Reserved pads shall have an im hs and less than 100 pF.	unconnected w pedance to GN	ithin D that
lote nodu Cont	4: Plug le. The act sequ ence 1A,	Sequence s sequence is ence A will	pecifies the mating sequence of the host 3 1A, 2A, 3A, 1B, 2B, 3B. (see Figure 2 f 1 make, then break contact with additiona 1 men occur simultaneously, followed by 2A,	or pad locati 1 QSFP-DD pad	ons) s.

www.fiberstamp.com sales@fiberstamp.com FIBERSTAMP Co,.Ltd.

Table 1- Pad Function Definition


- 1	-		Table 1- Fau Function Definition		
Pad	Logic	Symbol	Description	Plug	Notes
				Sequence ⁴	
1		GND	Ground	1B	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3B	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3B	
4		GND	Ground	1B	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3B	ē
7		GND	Ground	1B	1
8	LVTTL-I	ModSelL	Module Select	3B	
9	LVTTL-I	ResetL	Module Reset	3B	
10		VccRx	+3.3V Power Supply Receiver	2В	2
11	LVCMOS- I/O	SCL	2-wire serial interface clock	3В	
12	LVCMOS- I/O	SDA	2-wire serial interface data	3B	
13		GND	Ground	1B	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3B	
15	CML-O	Rx3n	Receiver Inverted Data Output	3B	
16		GND	Ground	1B	1
17	CML-0	Rx1p	Receiver Non-Inverted Data Output	3B	
18	CML-0	Rx1n	Receiver Inverted Data Output	3B	
19		GND	Ground	1B	1
20		GND	Ground	1B	1
21	CML-0	Rx2n	Receiver Inverted Data Output	3B	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3B	
23		GND	Ground	1B	1
24	CML-0	Rx4n	Receiver Inverted Data Output	3B	
25	CML-0	Rx4p	Receiver Non-Inverted Data Output	3B	0
26		GND	Ground	1B	1
27	LVTTL-0	ModPrsL	Module Present	3B	1
28	LVTTL-0	IntL	Interrupt	3B	
29		VccTx	+3.3V Power supply transmitter	2в	2
30		Vcc1	+3.3V Power supply	2B	2
31	LVTTL-I	InitMode	Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE	3в	
32	8	GND	Ground	1B	1
33	CML-I	ТхЗр	Transmitter Non-Inverted Data Input	3B	
34	CML-I	Tx3n	Transmitter Inverted Data Input	3B	
35		GND	Ground	1B	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3B	10-10-00- 10-
37	CML-I	Tx1n	Transmitter Inverted Data Input	3B	
				2017/01/2	2

www.fiberstamp.com sales@fiberstamp.com FIBERSTAMP Co,.Ltd.

ModSelL Pin

The ModSelL is an input signal that must be pulled to Vcc in the QSFP-DD module. When held low by the host, the module responds to 2-wire serial communication commands. The ModSelL allows the use of multiple QSFP-DD modules on a single 2-wire interface bus. When ModSelL is "High", the module shall not respond to or acknowledge any 2-wire interface communication from the host.

In order to avoid conflicts, the host system shall not attempt 2-wire interface communications within the ModSelL de-assert time after any QSFP-DD modules are deselected. Similarly, the host must wait at least for the period of the ModSelL assert time before communicating with the newly selected module. The assertion and de-asserting periods of different modules may overlap as long as the above timing requirements are met.

ResetL Pin

The ResetL signal shall be pulled to Vcc in the module. A low level on the ResetL signal for longer than the minimum pulse length

(t_Reset_init) (See Table 13) initiates a complete module reset, returning all user module settings to their default state.

InitMode Pin

InitMode is an input signal. The InitMode signal must be pulled up to Vcc in the QSFP-DD module. The InitMode signal allows the host to define whether the QSFP-DD module will initialize under host software control (InitMode asserted High) or module hardware control (InitMode deasserted Low). Under host software control, the module shall remain in Low Power Mode until software enables the transition to High Power Mode, as defined in Section 7.5. Under hardware control (InitMode de-asserted

FIBERSTAMP

Low), the module may immediately transition to High Power Mode after the management interface is initialized. The host shall not change the state of this signal while the module is present. In legacy QSFP applications, this signal is named LPMode. See SFF-8679 for signal description.

ModPrsL Pin

ModPrsL must be pulled up to Vcc Host on the host board and grounded in the module. The ModPrsL is asserted "Low" when the module is inserted and deasserted "High" when the module is physically absent from the host connector.

IntL Pin

IntL is an output signal. The IntL signal is an open collector output and must be pulled to Vcc Host on the host board. When the IntL signal is asserted Low it indicates a change in module state, a possible module operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL signal is deasserted "High" after all set interrupt flags are read.

Power Supply Filtering

The host board should use the power supply filtering shown in Figure 3.

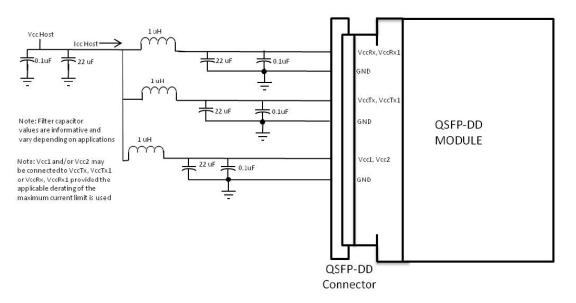
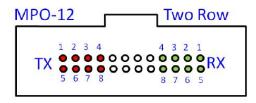



Figure 3. Host Board Power Supply Filtering

Optical Interface Lanes and Assignment

The optical interface port is a male MPO24 connector.

Figure 4. Optical Receptacle and Channel Orientation

DIAGNOSTIC MONITORING INTERFACE(OPTIONAL)

Digital diagnostics monitoring function is available on all FIBERSTAMP QSFP DD products. A 2-wire serial interfaceprovides user to contact with module.

The structure of the memory is shown in Figure 5. The memory space is arranged into a lower, single page, address space

of 128 bytes and multiple upper address space pages. This structure permits timely access to addresses in the lower page,

e.g. Interrupt Flags and Monitors. Less time critical entries, e.g. serial ID information and threshold settings, are available with the Page Select function. The structure also provides address expansion by adding additional upper pages as needed.

The interface address used is A0xh and is mainly used for time critical data like interrupt handling in order to enable a one-time-read for all data related to an interrupt situation. After an interrupt, IntL, has been asserted, the host can read out the flag field to determine the affected channel and type of flag.

FIBERSTAMP

	Lower Page				►Page 00h	
0	ID and Status	(3 Bytes) Read-Only		128 191 192	Base ID Fields	(64 Bytes) Read-Only
2		Read-Only		122222	Extended ID	(32 Bytes) Read-Only
	Interrupt Flags (Clear on read)	(15 Bytes) Read-Only		223 224 239	Device Properties	(16 Bytes) Read-Only
17 18	State Indicators	(8 Bytes) Read-Only		240 255	Vendor Specific ID	(16 Bytes) Read-Only
25 26 31	Module Monitors	(6 Bytes) Read-Only	1	128	 Page 01h (Option Application Code 	10,000
31 32	Channel Monitors	(48 Bytes)		255	Table	(128 Bytes) Read-Only
79		Read-Only	-		 Page 02h (Option 	ial)
80	Control	(22 Bytes) Read/Write		128 255	User EEPROM Data	(128 Bytes) Read/Write
101			-		 Page 03h (Option 	ial)
102	Interrupt Masks	(15 Bytes) Read/Write	(128 175	Device Thresholds	(48 Bytes) Read-Only
116 117		(2 Bytes)		176 223	Channel Thresholds	(48 Bytes) Read-Only
118	Vendor Specific	Read/Write		224	Extended Control	(28 Bytes) Read/Write
119	Password Change	(4 Bytes)		251 252 255	Firmware ID	(4 Bytes) Read-Only
122	Entry Area	Read/Write	1		 Pages 04h-19h (0 	Optional)
122	Password Entry	(4 Bytes)		128 255	Vendor Specific Data	(128 Bytes) Read/Write
126	Area	Read/Write	-	-	 Page 20h/21h (Op 	ptional)
126 127	Page Select Byte	(1 Byte) Read/Write	1	128 255	WDM Control and Data	(128 Bytes) Read/Write
127		i courrine	-		Pages 22h+ (Optio	onal)
8)	128 255	Reserved	(128 Bytes) Read/Write

Figure 5. QSFP DD Memory Map

Table 16-	Lower	Page	Overview	(Lower Page)	

	Table 10- Lower Fage Overview (Lower Fage)						
Address	Description	Туре					
0 - 2	Id and Status (3 bytes)	Read-only					
3 - 17	Interrupt Flags (15 bytes)	Read-only					
18 - 25	State Indicators (8 bytes)	Read-only					
26 - 31	Module card Monitors (6 bytes)	Read-only					
32 - 79	Channel Monitors (48 bytes)	Read-only					
80 - 101	Control Fields (22 bytes)	Read/Write					
102 - 116	Interrupt Flag Masks (15 bytes)	Read/Write					
117 - 118	Reserved	Read/Write					
119 - 122	Password Change Area (4 bytes)	Write-Only					
123 - 126	Password Entry Area (4 bytes)	Write-Only					
127	Page Select Byte	Read/Write					

Figure6. Low Memory Map

FIBERSTAMP

Table 28- Upper Page 0 Overview (Page 00h)

Address	Size (bytes)	Name	Description			
Base ID H	Tields:					
128	1	Identifier	Identifier Type of module			
129	1	Ext. Identifier	Extended Identifier			
130	1	Connector Type	Code for media connector type			
131-138	8	Specification compliance	Code for electronic compatibility or optical compatibility			
139	1	Encoding	Code for serial encoding algorithm			
140	1	BR, nominal	Nominal bit rate, units of 100 MBits/s			
141	1	Extended rate select compliance	Tags for extended rate select compliance			
142-146	5	Link length	Link length / transmission media			
147	1	Device technology	Device technology			
148-163	16	Vendor name	Vendor name (ASCII)			
164	1	Extended Module	Extended Module codes for InfiniBand			
165-167	3	Vendor OUI	Vendor IEEE company ID			
168-183	16	Vendor PN	Part number provided by vendor (ASCII)			
184-185	2	Vendor rev	Revision level for part number provided by vendor (ASCII)			
186-187	2	Wavelength or Copper				

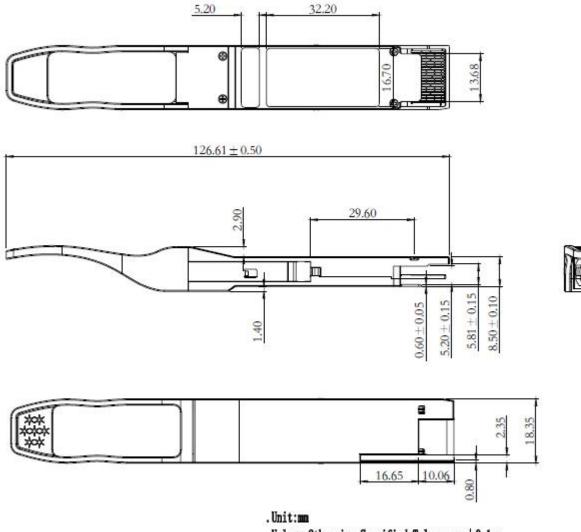
		cable Attenuation	(wavelength=value/20 in nm) or copper cable attenuation in dB at 2.5GHz (Adrs 186) and 5.0GHz (Adrs 187)
188-189	2	Wavelength tolerance	Guaranteed range of laser wavelength(+/- value) from nominal wavelength.(wavelength Tolerance=value/200 in nm)
190	1	Max case temp.	Maximum case temperature in degrees C
191	1	CC_BASE	Check code for base ID fields (addresses 128-190 inclusive)
Extended	ID Field	ls:	
192-195	4	Options	Indicates which optional capabilities are implemented in the module
196-211	16	Vendor S/N	Vendor product serial number
212-219	8	Date Code	Vendor's manufacturing date code
220	1	Diagnostic Monitoring Type	Indicates which types of diagnostic monitoring are implemented in the module
221-222	2	Enhanced Options	Indicates which optional enhanced features are implemented in the module.
223	1	CC_EXT	Check code for the Extended ID Fields (addresses 192-222 inclusive)
224-238	15	Device Properties	Provides detailed information about the device
239	1	CC-PROP	Check code for the Device Properties Fields (addresses 224-2382 inclusive)
Vendor Sp	pecific :	ID Fields:	
240-255	16	Vendor-Specific	Vendor-specific ID information

Figure 7. Page 00 Memory Map

Timing for Soft Control and Status Functions

Parameter	Symbol	Min	Max	Unit	ol and status functions Conditions
MgmtInitDuration	Max MgmtInit Duration		2000	ms	Time from power on ² , hot plug or rising edge of reset until completion of the MgmtInit State
ResetL Assert Time	t_reset_init	2		μs	Minimum pulse time on the ResetL signal to initiate a module reset.
IntL Assert Time	ton_IntL		200	ms	Time from occurrence of condition triggering IntL until Vout:IntL=Vol
IntL Deassert Time	toff_IntL		500	μs	Time from clear on read ³ operation of associated flag until Vout:IntL=Voh. This includes deassert times for Rx LOS, Tx Fault and other flag bits.
Rx LOS Assert Time	ton_los		100	ms	Time from Rx LOS state to Rx LOS bit set (value = 1b) and IntL asserted.
Rx LOS Assert Time (optional fast mode)	ton_losf		1	ms	Time from Rx LOS state to Rx LOS bit set (value = 1b) and IntL asserted.
Rx LOS Deassert Time (optional fast mode)	toff_losf		3	ms	Time from signal present to negation of Rx LOS status bit.
Tx Fault Assert Time	ton_Txfault		200	ms	Time from Tx Fault state to Tx Fault bit set (value=1b) and IntL asserted.
Flag Assert Time	ton_flag		200	ms	Time from occurrence of condition triggering flag to associated flag bit set (value=1b) and IntL asserted.
Mask Assert Time	ton_mask		100	ms	Time from mask bit set (value=1b) ¹

IRDA HOUSELE TIME	con_mask	100	mo	until associated IntL assertion is inhibited
Mask Deassert Time	toff_mask	100	ms	Time from mask bit cleared (value=0b) ¹ until associated IntL operation resumes
Application or Rate Select Change Time	t_ratesel	100	ms	Time from change of state of Application or Rate Select bit ¹ until transmitter or receiver bandwidth is in conformance with appropriate specification
Note 1. Measured fi	rom the rising ed	lge of SDA	in t	he stop bit of the write transaction
Note 2. Power on is above the minimum lev			when s	upply voltages reach and remain at or
Note 3. Measured fro	om the rising edg	re of SDA	in th	e stop bit of the read transaction


Figure9. Timing Specifications

Mechanical Dimensions

. Unless Otherwise Specified, Tolerance ±0. 1mm

Figure 10. Mechanical Specifications

Ordering information

Part Number	Product Description	
FEL-20088M10C	QSFP DD, 2x100GBASE-SR4, 70m on OM3 Multimode Fiber (MMF)and 100m on OM4 MMF	

References

- 1. QSFP-DD Hardware Rev 5.0
- 2. CMIS V4.0
- 3. Ethernet 100GBASE-SR4 IEEE802.3bm

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by FIBERSTAMP before they become applicable to any particular order or contract. In accordance with the FIBERSTAMP policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of FIBERSTAMP or

others. Further details are available from any FIBERSTAMP sales representative.

