QSFP28 128GFC SR4 100m Optical Transceiver Module FEG-112S4M10C

Features

- 4 channels full-duplex transceiver modules
- Transmission data rate up to 28Gbps per channel for 128GFC/OTU4 application
- 4 channels 850nm VCSEL array
- 4 channels PIN photo detector array
- Internal CDR circuits on both receiver and transmitter channels
- Support CDR bypass
- Low power consumption <2.0W
- Hot Pluggable QSFP form factor
- Maximum link length of 70m on OM3 Multimode Fiber (MMF) and 100m on OM4

MMF

- Single MPO connector receptacle
- Operating case temperature 0°C to +70°C
- 3.3V power supply voltage
- RoHS 6 compliant(lead free)

Applications

OTU4/128GFC

Description

The FIBERSTAMP Technologies FEG-112S4M10C is a Four-Channel, Pluggable, Parallel, Fiber-Optic QSFP28 SR4 for 128G Fiber Channel and OTU4 Applications. This transceiver is a high performance module for short-range multi-lane data communication and interconnect applications. It integrates four data lanes in each direction with 112.2 Gbps bandwidth. Each lane can operate at 28.05Gbps up to 70 m using OM3 fiber or 100 m using OM4 fiber. These modules are designed to operate over multimode fiber systems using a nominal wavelength of 850nm. The electrical interface uses a 38 contact edge type connector. The optical interface uses an 12 fiber MTP (MPO) connector. This module incorporates FIBERSTAMP Technologies proven circuit and VCSEL technology to provide reliable long life, high performance, and consistent service.

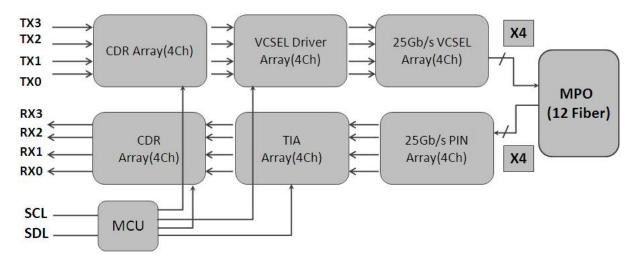


Figure 1. Module Block Diagram

128G FC QSFP28 is one kind of parallel transceiver. VCSEL and PIN array package is key technique, through I2C system can contact with module.

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.3	3.6	V
Input Voltage	Vin	-0.3	Vcc+0.3	V
Storage Temperature	Tst	-20	85	°C
Case Operating Temperature	Тор	0	70	°C
Humidity(non-condensing)	Rh	5	95	%

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit
Supply Voltage	Vcc	3.13	3.3	3.47	V
Operating Case temperature	Tca	0		70	°C
Data Rate Per Lane	fd		28.05		Gbps
Humidity	Rh	5		85	%
Power Dissipation	Pm			2.0	W
Fiber Bend Radius	Rb	3			cm

Electrical Specifications

Parameter	Symbol	Min	Typical	Max	Unit
Differential input impedance	Zin	90	100	110	ohm
Differential Output impedance	Zout	90	100	110	ohm
Differential input voltage amplitude	ΔVin	300		1100	mVp-p
Differential output voltage amplitude	ΔVout	500		800	mVp-p
Skew	Sw			300	ps
Bit Error Rate	BER		5E-5		
Input Logic Level High	VIH	2.0		VCC	V
Input Logic Level Low	VIL	0		0.8	V
Output Logic Level High	VOH	VCC-0.5		VCC	V
Output Logic Level Low	VOL	0		0.4	V

Note:

- 1. Differential input voltage amplitude is measured between TxnP and TxnN.
- 2. Differential output voltage amplitude is measured between RxnP and RxnN.

Optical Characteristics

Table 3 - Optical Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Notes
	'	Transmitte	r	'		
Centre Wavelength	λς	840	850	860	nm	-
RMS spectral width	Δλ	-	-	0.6	nm	-
Average launch power, each lane	Pout	-8.4	-	2.4	dBm	-
Optical Modulation Amplitude (OMA),each lane	ОМА	-6.4		3	dBm	-
Transmitter and dispersion eye closure(TDEC),each lane	TDEC			4.3	dB	
Extinction Ratio	ER	3	-	-	dB	-
Average launch power of OFF transmitter, each lane				-30	dB	-
Eye Mask coordinates:		Hit Ratio =				
X1, X2, X3, Y1, Y2, Y3		{0.3,0.3	5x10-5			
		Receiver				
Centre Wavelength	λc	840	850	860	nm	-
Receiver sensitivity in OMA				-5.2	dBm	1
(32GFC,28.05Gbps.)						
Receiver sensitivity in OMA (OTU4,27.95Gbps.)				-5.2	dBm	2
Maximum Average power at receiver , each lane input, each lane				2.4	dBm	-
Minimum Average power at receiver , each lane				-10.3	dBm	
Receiver Reflectance				-12	dB	-
LOS Assert		-30			dBm	-
LOS De-Assert – OMA				-7.5	dBm	-
LOS Hysteresis		0.5			dB	-

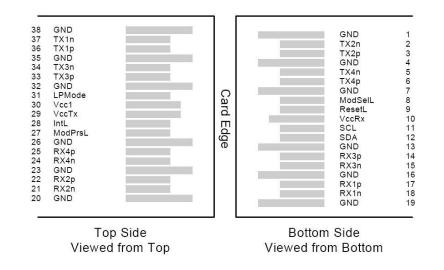
- 1. Measured with conformance test signal at TP3 for BER=5E-5@32GFC,28.05Gbps.
- 2. Measured with conformance test signal at TP3 for BER=1E-6@OTU4, 27.95Gbps

Pin Descriptions

Pin	Logic	Symbol	Name/Description	Ref.
1		GND	Module Ground	1
2	CML-I	Tx2-	Transmitter inverted data input	
3	CML-I	Tx2+	Transmitter non-inverted data input	
4		GND	Module Ground	1

Pin	Logic	Symbol	Name/Description	Ref.
5	CML-I	Tx4-	Transmitter inverted data input	
6	CML-I	Tx4+	Transmitter non-inverted data input	
7		GND	Module Ground	1
8	LVTTL-I	MODSEIL	Module Select	2
9	LVTTL-I	ResetL	Module Reset	2
10		VCCRx	+3.3v Receiver Power Supply	
11	lvcmos-i	SCL	2-wire Serial interface clock	2
12	lvcmos-1/0	SDA	2-wire Serial interface data	2
13		GND	Module Ground	1
14	CML-O	RX3+	Receiver non-inverted data output	
15	CML-O	RX3-	Receiver inverted data output	
16		GND	Module Ground	1
17	CML-O	RX1+	Receiver non-inverted data output	
18	CML-O	RX1-	Receiver inverted data output	
19		GND	Module Ground	1
20		GND	Module Ground	1
21	CML-O	RX2-	Receiver inverted data output	
22	CML-O	RX2+	Receiver non-inverted data output	
23		GND	Module Ground	1
24	CML-O	RX4-	Receiver inverted data output	
25	CML-O	RX4+	Receiver non-inverted data output	
26		GND	Module Ground	1
27	LVTTL-O	ModPrsL	Module Present, internal pulled down to GND	
28	LVTTL-O	IntL	Interrupt output, should be pulled up on host board	2
29		VCCTx	+3.3v Transmitter Power Supply	
30		VCC1	+3.3v Power Supply	
31	LVTTL-I	LPMode	Low Power Mode	2
32		GND	Module Ground	1
33	CML-I	Tx3+	Transmitter non-inverted data input	
34	CML-I	Tx3-	Transmitter inverted data input	
35		GND	Module Ground	1
36	CML-I	Tx1+	Transmitter non-inverted data input	
37	CML-I	Tx1-	Transmitter inverted data input	
38		GND	Module Ground	1

Notes:


1. Module circuit ground is isolated from module chassis ground within the module.

2. Open collector; should be pulled up with 4.7k – 10k ohms on host board to a voltage between 3.15V and 3.6V.

ModSelL Pin

The ModSelL is an input pin. When held low by the host, the module responds to 2-wire serial communication commands. The ModSelL allows the use of multiple QSFP modules on a single 2-wire interface bus. When the ModSelL is "High", the module will not respond to any 2-wire interface communication from the host.

ModSelL has an internal pull-up in the module.

ResetL Pin

Reset. LPMode_Reset has an internal pull-up in the module. A low level on the ResetL pin for longer than the minimum pulse length (t_Reset_init) initiates a complete module reset, returning all user module settings to their default state. Module Reset Assert Time (t_init) starts on the rising edge after the low level on the ResetL pin is released. During the execution of a reset (t_init) the host shall disregard all status bits until the module indicates a completion of the reset interrupt. The module indicates this by posting an IntL signal with the Data_Not_Ready bit negated. Note that on power up (including hot insertion) the module will post this completion of reset interrupt without requiring a reset.

LPMode Pin

FIBERSTAMP QSFP28 SR4 operate in the low power mode (less than 1.5 W power consumption) This pin active high will decrease power consumption to less than 1W.

ModPrsL Pin

ModPrsL is pulled up to Vcc on the host board and grounded in the module. The ModPrsL is asserted "Low" when the module is inserted and deasserted "High" when the module is physically absent from the host connector.

IntL Pin

IntL is an output pin. When "Low", it indicates a possible module operational fault or a status critical to the host system. The host

identifies the source of the interrupt by using the 2-wire serial interface. The IntL pin is an open collector output and must be

pulled up to Vcc on the host board.

Power Supply Filtering

The host board should use the power supply filtering shown in Figure 3.

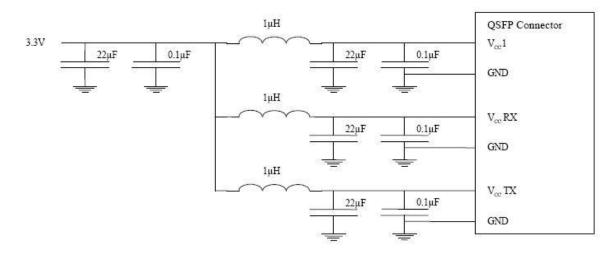


Figure 3. Host Board Power Supply Filtering

Optical Interface Lanes and Assignment

The optical interface port is a male MPO connector. The four fiber positions on the left as shown in Figure 4, with the key up, are used for the optical transmit signals (Channel 1 through 4). The fiber positions on the right are used for the optical receive signals (Channel 4 through 1). The central four fibers are physically present.

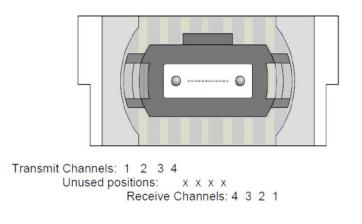


Figure 4. Optical Receptacle and Channel Orientation

DIAGNOSTIC MONITORING INTERFACE (OPTIONAL)

Digital diagnostics monitoring function is available on all FIBERSTAMP QSFP28 AOC. A 2-wire serial interface provides user to contact with module.

The structure of the memory is shown in Figure 5. The memory space is arranged into a lower, single page, address space of 128 bytes and multiple upper address space pages. This structure permits timely access to addresses in the lower page, such as Interrupt Flags and Monitors. Less time critical time entries, such as serial ID information and threshold settings, are available with the Page Select function.

The interface address used is A0xh and is mainly used for time critical data like interrupt handling in order to enable a one-time-read for all data related to an interrupt situation. After an interrupt, IntL, has been asserted, the host can read out the

flag field to determine the affected channel and type of flag.

2-wire serial address, 1010000x (A0h)"

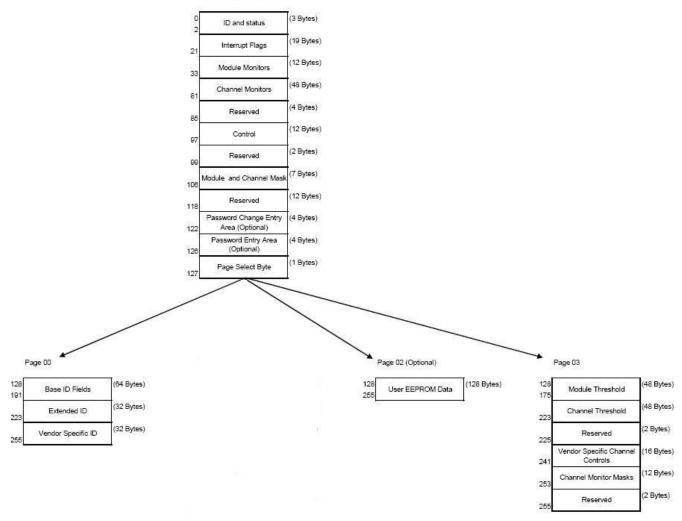


Figure 5. QSFP Memory Map

Byte Address	Description	Туре		
0	Identifier (1 Byte)	Read Only		
1-2	Status (2 Bytes)	Read Only		
3-21	Interrupt Flags (31 Bytes)	Read Only		
22-33	Module Monitors (12 Bytes)	Read Only		
34-81	Channel Monitors (48 Bytes)	Read Only		
82-85	Reserved (4 Bytes)	Read Only		
86-97	Control (12 Bytes)	Read/Write		
98-99	Reserved (2 Bytes)	Read/Write		
100-106	Module and Channel Masks (7 Bytes)	Read/Write		
107-118	Reserved (12 Bytes)	Read/Write		
119-122 Reserved (4 Bytes)		Read/Write		
123-126 Reserved (4 Bytes)		Read/Write		
127	Page Select Byte	Read/Write		

Figure6. Low Memory Map

Byte Address Description		Туре		
128-175	Module Thresholds (48 Bytes)	Read Only		
176-223 Reserved (48 Bytes)		Read Only		
224-225 Reserved (2 Bytes)		Read Only		
226-239 Reserved (14 Bytes)		Read/Write		
240-241 Channel Controls (2 Bytes)		Read/Write		
242-253 Reserved (12 Bytes)		Read/Write		
254-255	Reserved (2 Bytes)	Read/Write		

Figure 7. Page 03 Memory Map

Address	Name	Description
128	Identifier (1 Byte)	Identifier Type of serial transceiver
129	Ext. Identifier (1 Byte)	Extended identifier of serial transceiver
130	Connector (1 Byte)	Code for connector type
131-138	Transceiver (8 Bytes)	Code for electronic compatibility or optical compatibility
139	Encoding (1 Byte)	Code for serial encoding algorithm
140	BR, nominal (1 Byte)	Nominal bit rate, units of 100 Mbits/s
141	Extended RateSelect Compliance (1 Byte)	Tags for Extended RateSelect compliance
142	Length SMF (1 Byte)	Link length supported for SM fiber in km
143	Length E-50 µm (1 Byte)	Link length supported for EBW 50/125 µm fiber, units of 2 m
144	Length 50 µm (1 Byte)	Link length supported for 50/125 µm fiber, units of 1 m
145	Length 62.5 µm (1 Byte)	Link length supported for 62.5/125µm fiber, units of 1 m
146	Length copper (1 Byte)	Link length supported for copper, units of 1 m
147	Device Tech (1 Byte)	Device technology
148-163	Vendor name (16 Bytes)	QSFP vendor name (ASCII)
164	Extended Transceiver (1 Byte)	Extended Transceiver Codes for InfiniBand [†]
165-167	Vendor OUI (3 Bytes)	QSFP vendor IEEE vendor company ID
168-183	Vendor PN (16 Bytes)	Part number provided by QSFP vendor (ASCII)
184-185	Vendor rev (2 Bytes)	Revision level for part number provided by vendor (ASCII)
186-187	Wavelength (2 Bytes)	Nominal laser wavelength (Wavelength = value / 20 in nm)
188-189	Wavelength Tolerance (2 Bytes)	Guaranteed range of laser wavelength (+/- value) from Nominal wavelength (Wavelength Tol. = value / 200 in nm)
190	Max Case Temp (1 Byte)	Maximum Case Temperature in Degrees C
191	CC_BASE (1 Byte)	Check code for Base ID fields (addresses 128-190)
192-195	Options (4 Bytes)	Rate Select, TX Disable, TX Fault, LOS
196-211	Vendor SN (16 Bytes)	Serial number provided by vendor (ASCII)
212-219	Date code (8 Bytes)	Vendor's manufacturing date code
220	Diagnostic Monitoring Type (1 Byte)	Indicates which type of diagnostic monitoring is implemented
221	Enhanced Options (1 Byte)	Indicates which optional enhanced features are implemented
222	Reserved (1 Byte)	Reserved
223	CC_EXT	Check code for the Extended ID Fields (addresses 192-222)
224-255	Vendor Specific (32 Bytes)	Vendor Specific EEPROM

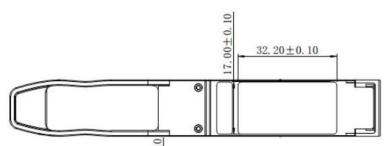
Figure8. Page 00 Memory Map

Page02 is User EEPROM and its format decided by user.

The detail description of low memory and page00.page03 upper memory please see SFF-8436 document.

Parameter	Parameter Symbol Max Unit		Conditions	
l'ulumeter	Symbol	Max		
Initialization Time	t init	2000	ms	Time from power on ¹ , hot plug or rising edge of Reset until
	1_11111	2000	1115	the module is fully functional ²
	1	0		A Reset is generated by a low level longer than the
Reset Init Assert Time	t_reset_init	2 µs	minimum reset pulse time present on the ResetL pin.	
Serial Bus Hardware Ready	teorici	2000	2000 ms	Time from power on ¹ until module responds to data
Time	t_serial	2000		transmission over the 2-wire serial bus
Manifer Data Daart Time	t elevter		Time from power on ¹ to data not ready, bit 0 of Byte 2,	
Monitor Data Ready Time	t_data	2000	ms	deasserted and IntL asserted
	h an an h	0000		Time from rising edge on the ResetL pin until the module is
Reset Assert Time	t_reset	2000	ms	fully functional ²
		100		Time from assertion of LPMode (Vin:LPMode = Vih) until
LPMode Assert Time	ton_LPMode	100 µs	module power consumption enters lower Power Level	
IntL Assert Time	ton_IntL	200	ms	Time from occurrence of condition triggering IntL until

Timing for Soft Control and Status Functions



Parameter	Symbol	Max	Unit	Conditions
				Vout:IntL = Vol
				Time from clear on read ³ operation of associated flag
IntL Deassert Time	toff_IntL	500	μs	until Vout:IntL = Voh. This includes deassert times for Rx
				LOS, Tx Fault and other flag bits.
Rx LOS Assert Time	ton_los	100	ms	Time from Rx LOS state to Rx LOS bit set and IntL asserted
Tx Fault Assert Time	ton_Txfault	200	ms	Time from Tx Fault state to Tx Fault bit set and IntL asserted
	top floor	200		Time from occurrence of condition triggering flag to
Flag Assert Time	ssert Time ton_flag 200 ms	ms	associated flag bit set and IntL asserted	
Mask Assert Time	ton_mask	100	ms	Time from mask bit set ⁴ until associated IntL assertion is
MUSK ASSENTITIE	TON_MOSK	100 ms	1115	inhibited
Mask Deassert Time	toff_mask	100	ms	Time from mask bit cleared ⁴ until associated IntIL
		100	1115	operation resumes
ModSelL Assert Time	ton_ModSelL	100	μs	Time from assertion of ModSelL until module responds to
	ION_MOUSCIE	100	μ3	data transmission over the 2-wire serial bus
ModSelL Deassert Time	toff_ModSelL	100		Time from deassertion of ModSelL until the module does
MOQ3EIL DEG33EIT IIITIE		100	μs	not respond to data transmission over the 2-wire serial bus
Power_over-ride or	ton_Pdown	100	ms	Time from P_Down bit set ⁴ until module power
Power-set Assert Time		100	ms	consumption enters lower Power Level
Power_over-ride or	toff_Pdown	300	ma	Time from P_Down bit cleared ⁴ until the module is fully
Power-set Deassert Time		500	ms	functional3

Note:

- 1. Power on is defined as the instant when supply voltages reach and remain at or above the minimum specified value.
- 2. Fully functional is defined as IntL asserted due to data not ready bit, bit 0 byte 2 deasserted.
- 3. Measured from falling clock edge after stop bit of read transaction.
- 4. Measured from falling clock edge after stop bit of write transaction.

Mechanical Dimensions

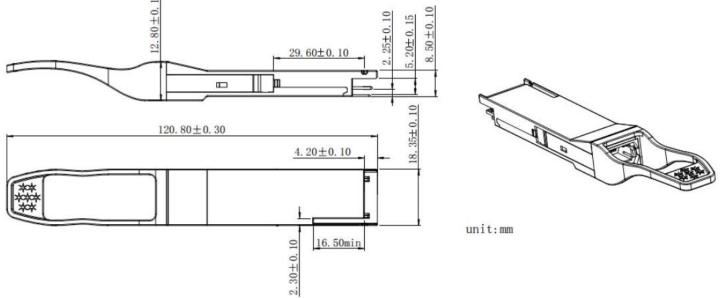


Figure 10. Mechanical Specifications

Data Sheet

Regulatory Compliance

FIBERSTAMP FEG-112S4M10C QSFP28 transceivers are Class 1 Laser Products. They are certified per the following standards:

Feature	Agency	Standard
Laser Eye Safety	FDA/CDRH	CDRH 21 CFR 1040 and Laser Notice 50
ЕМС	FCC	47 CFR FCC Part 15 Subpart B
EMC		EN 55032:2015
EMC	CE-EMC	EN55035:2017

Complies with FDA performance standards for laser products except for deviations pursuant to Laser Notice No. 50, dated June 24, 2007.

References

- 1. QSFP28 MSA
- 2. 128GFC Specification, per ANSI T.11 FC-PI-6P.
- 3. IEEE 802.3bm, PMD Type 100GBASE-SR4 and CAUI-4.
- 4. Directive 2011/65/EU of the European Parliament and of the Council, "on the restriction of the use of certain hazardous

substances in electrical and electronic equipment," July 1, 2011.

ACAUTION:

Use of controls or adjustment or performance of procedures other than those specified herein may result in hazardous radiation exposure.

Ordering information

Part Number	Product Description
GQS-MP111-SR4C	QSFP28, 128GFC, 70m on OM3 Multimode Fiber (MMF) and 100m on OM4 MMF

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically

confirmed in writing by FIBERSTAMP before they become applicable to any particular order or contract. In accordance with

the FIBERSTAMP policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of FIBERSTAMP or others. Further details are available from any FIBERSTAMP sales representative.

